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Abstract

Hydrogen sulfide is a novel mediator with the unique properties of a gasotransmitter and many and varied
physiological effects. Included in these effects are a number of cardiovascular effects that are proving beneficial

to vascular health. Specifically, H,S can elicit vasorelaxation, prevention of inflammation and leukocyte adhesion,
anti-proliferative effects and anti-thrombotic effects. Additionally, H,S is a chemical reductant and nucleophile that
is capable of inhibiting the production of reactive oxygen species, scavenging and neutralising reactive oxygen
species and boosting the efficacy of endogenous anti-oxidant molecules. These result in resistance to oxidative
stress, protection of vascular endothelial function and maintenance of blood flow and organ perfusion. H,S has
been shown to be protective in hypertension, atherosclerosis and under conditions of vascular oxidative stress, and
deficiency of endogenous H-S production is linked to cardiovascular disease states. Taken together, these effects
suggest that H,S has a physiological role as a vasculoprotective factor and that exogenous H,S donors may be
useful therapeutic agents. This review article will discuss the vascular effects and anti-oxidant properties of H>S as

well as examine the protective role of H,S in some important vascular disease states.
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Introduction

Hydrogen sulfide is now a recognised gaseous mediator
and induces many and varied biological effects [1]. Sev-
eral cardiovascular actions of H,S have been described,
including vasorelaxation, prevention of inflammation
and leukocyte adhesion, anti-proliferative effects, anti-
thrombotic effects, resistance to oxidative stress and
protection against ischemia-reperfusion injury. These
result in protection of endothelial function, resistance
to vascular remodelling and maintenance of blood flow
and organ perfusion. Taken together, these effects suggest
that H,S has a physiological role as a vasculoprotective
factor. This review examines the evidence that H,S is an
important vascular regulator and protectant.

H,S production, storage and metabolism

H,S is produced endogenously via the metabolism of cyst-
eine and/or homocysteine [2], by the enzymes cystathionine-
B-synthase (CBS, EC 4.2.1.22) [3] and cystathionine-y-lyase
(CSE, EC 4.4.1.1) [4]. 3-mercaptopyruvate sulfurtransferase
(3-MST, EC 2.8.1.2) can also generate H,S acting in
concert with cysteine aminotransferase (EC 2.6.1.75) to
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metabolise cysteine, generating pyruvate and H,S [5].
CBS is a major contributor to H,S production in the
brain, whilst CSE levels predominate in most peripheral
tissues. 3-MST appears to contribute to H,S production
in both the periphery and central nervous system [5,6]. In
the vascular system CSE is primarily expressed in vascular
smooth muscle cells but there is also evidence that it is
expressed in the endothelium [7,8].

H,S is metabolized by mitochondrial oxidative modi-
fication that converts sulfide into thiosulfate, which is
converted further into sulfite and finally sulfate, which is
the major end product of H,S metabolism [9]. H,S con-
sumption in the presence of O, is high [10], thus H,S
production is offset by rapid clearance, resulting in low
basal levels of H,S. In addition to high clearance H,S
may also be stored as acid-labile sulphur [11] or bound
sulfane sulphur within cells [12]. The metabolic turnover
of H,S and concentrations of the gas generated in vivo
during cell stimulation are yet to be fully elucidated and
will be an area of importance in H,S biology future
research.

Gasotransmitter and chemical properties
Gaseous mediators or gasotransmitters are a relatively
new class of signalling molecules, These gases share
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many features in their production and action but differ
from classical signalling molecules. Advantages of gases
as signalling molecules include their small size which
allows easy access to a variety of target sites that would
not be accessible by larger molecules. They easily cross
membranes, are labile with short half-lives and are
made on demand. They are not stored in their native
form as they can’t be constrained by vesicles and need
to be bound for storage or rely upon de novo synthesis.
They can have endocrine, paracrine, autocrine or even
intracrine effects. It is also interesting that all the mole-
cules confirmed as gasotransmitters (nitric oxide (NO),
carbon monoxide (CO), H,S) were all considered only
as toxic molecules until their endogenous production
and effects were determined.

About 80% of H,S molecules dissociate into hydrosulfide
anion (HS") at physiological pH 7.4 in plasma and extracel-
lular fluids [13]. HS™ is a potent one-electron chemical
reductant and nucleophile that is capable of scavenging
free radicals by single electron or hydrogen atom trans-
fer [14,15] Thus, H,S should readily scavenge reactive ni-
trogen species (RNS) and reactive oxygen species (ROS)
[16]. It is also now established that H,S can signal via
sulhydration of proteins [17], and much research is on-
going in this area.

H,S effects on blood vessels

Endothelium derived substances that cause vasodila-
tation (eg NO, prostacyclin) are anti-proliferative and
anti-thrombotic while constrictor factors (endothelin-1,
thromboxane A,) are proliferative and pro-coagulant. Thus
the vasodilators can be considered vasculoprotective, as
they protect and promote blood flow and a balance of
endothelium-derived relaxing and contracting factors is
required for a healthy vascular function [18]. H,S is pro-
duced in blood vessels by both endothelial cells and vas-
cular smooth muscle has these same vasculoprotective
properties (Figure 1). These are further discussed below.

Vasorelaxation elicited by H,S

H,S induced vasorelaxation in peripheral vessels may be
mediated by various mechanisms, including opening of
potassium channels, blockade of voltage-gated Ca** chan-
nels, enhanced production or activity endothelial derived
factors, such as NO, PGI, and EDHF and decreased
pH;. The vasorelaxant effect occurs in both large conduit
[19-22] and small resistance-like blood vessels [7,23,24]
and is physiologically relevant since an inhibition of
CSE in isolated mouse aorta in vitro causes significant
vascular contraction [19] and most importantly, mice defi-
cient in CSE are hypertensive and have endothelial dys-
function [8].
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Figure 1 The balance between vascular relaxant and
constrictor factors. The balance of vasoactive factors maintains
vascular tone. Vasodilator factors also have anti-proliferative and
anti-thrombotic effects, whereas vasoconstrictor factors tend to also
have proliferative and/or pro-thrombotic effects. Increases in
vasoconstrictor factors or decreases in vasorelaxant factors favour
vascular contraction and other pathophysiological changes
detrimental to vascular health [18]. PGl,: prostacyclin, ET-1:
endothelin-1, TXA,: thromboxane A,, All: angiotensin II.

Platelet inhibition

Limited data is available on the action of H,S on platelets,
although it has been reported that H,S can decrease plate-
let aggregation [25]. A recent in vitro study showed that
platelet adhesion to collagen and fibrinogen, the first step
in platelet activation and aggregation, was significantly
reduced by nanomolar concentrations of NaHS. Addition-
ally, platelet superoxide production was also inhibited al-
though the mechanism of this effect was not examined
[26]. Whilst platelet adhesion and aggregation are import-
ant for vascular haemostatis in trauma, they are unde-
sirable under conditions of vascular inflammation and
atherosclerosis, so further investigation into the role of
H,S in platelet function is warranted.

H,S as an anti-oxidant in the vasculature

Reactive oxygen species (ROS) can be divided into free
radicals, such as superoxide (O,"") and hydroxyl (OH");
non-radicals, such as hydrogen peroxide (H,0,); and re-
active nitrogen species, such as NO (technically, NO’,
since it is a radical gas, with an unpaired electron) and
peroxynitrite (ONOQ"). In vascular cells, there are mul-
tiple sources for the generation of ROS, including mito-
chondria, cyclooxygenases and NADPH oxidases, xanthine
oxidase, cyclo-oxygenase [27]. In mammalian tissues, re-
active oxygen species (ROS) such as superoxide (O3) are
produced under both pathological and physiological con-
ditions. They are essential for the immunological defence
mechanism of phagocytes, however, overproduction of
ROS has detrimental effects on tissues including the vas-
culature. Excess ROS levels or oxidative stress are impli-
cated in the pathology and progression of cardiovascular
disease [28]. Excess levels of ROS can compromise the
antioxidant defence mechanism of the cells and react with
cellular macromolecules such as lipids, proteins, mem-
brane bound polyunsaturated fatty acids and DNA leading
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to irreversible cellular damage [29]. Furthermore, perhaps
the best characterized mechanism by which oxidative
stress can cause dysfunction and damage to vascular cells
is via the scavenging of vasoprotective nitric oxide by O3
leading to a reduction its biological half-life [30].

Superoxide is the parent ROS molecule in all cells. It
can be generated in vascular cells by NADPH oxidases
(or “Nox oxidases”), uncoupled endothelial NO synthase
(eNOS), the mitochondrial enzyme complexes, cyto-
chrome P450 and xanthine oxidase [27]. The Nox oxi-
dases are the only enzymes discovered to date that have
the primary function of generating superoxide (Nox1-3)
and hydrogen peroxide (Nox4). This family of enzymes
compromises two membrane-bound subunits, the Nox
catalytic subunit and p22phox as well as various combi-
nations of cytoplasmic subunits [31]. In the aorta at least
3 isoforms of Nox oxidase are expressed, Nox1-, Nox2-
and Nox4-containing Nox oxidases. Importantly, ROS
are generated at low levels in cerebral vessels and act
there as signalling molecules involved in vascular regu-
lation [32]. Excessive production of ROS, in particular
superoxide (O3) from Nox oxidases is implicated as a
key mediator of endothelial dysfunction (loss of NO
bioavailability) associated with many cardiovascular dis-
eases, including atherosclerosis, diabetic vascular disease
and hypertension [33].

H,S as a ROS scavenger

H,S is a potent one-electron chemical reductant and nu-
cleophile that is theoretically capable of scavenging free
radicals by single electron or hydrogen atom transfer
[14]. Thus, H,S may participate in many reactions [34]
and is reported to readily scavenge reactive oxygen and
nitrogen species such as peroxynitrite [35], superoxide
[36], hydrogen peroxide [37], hypochlorous acid [38]
and lipid hydroperoxides [14]. However the kinetics, re-
activity and mechanism of H,S/HS™ interactions with
ROS are poorly understood under physiological condi-
tions [14]. H,S has been reported to inhibit superoxide
production in human endothelial cells [39] and vascular
smooth muscle cells [40] by reducing Nox oxidase ex-
pression and activity. However it is not known if this ac-
tivity is physiologically relevant, or whether H,S can
protect against oxidative-stress driven vascular dysfunc-
tion. In addition, H,S is reported to increase glutathione
levels and bolster endogenous anti-oxidant defences
[41]. Collectively, these findings suggest that this mol-
ecule may be a useful vasoprotective agent.

H,S as an inhibitor of ROS formation

H,S has also been shown to be important in regulating
mitochondrial function [42] and can reduce mitochon-
drial ROS formation [43]. Hyperglycaemia induced over-
production of ROS was reversed with H,S treatment
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and furthermore, endogenously produced H,S acts to
protect endothelial function from hyperglycaemic oxi-
dative stress [44]. NaHS protects rat aortic smooth
muscle cells from homocysteine-induced cytotoxicity
and reactive oxygen species generation, and furthermore
NaHS-induced protective effects were synergistic with
endogenous anti-oxidants [36]. This study suggests that
H,S is capable of reducing production of H,O,, ONOO”
and O3 in a time and concentration dependent manner.
The mechanism of this effect was not established, how-
ever H,S at nanomolar concentrations has been reported
to inhibit superoxide formation in human endothelial
cells [39] and vascular smooth muscle cells [40] by redu-
cing Nox oxidase expression and activity.

H,S effects on endogenous anti-oxidants

NaHS has been shown to protect neurons from oxidative
stress by boosting glutathione levels [41] and others have
also shown that NaHS increases the activity of endogen-
ous anti-oxidants such as superoxide dismutase, glutathi-
one perioxidase and glutathione reductase [36,43,45,46].
There is now increasing evidence that H,S has a role in
regulating the nuclear factor erthyroid 2 (NF-E2)-related
factor 2 (Nrf2) pathway. Nrf2 is a key transcription regu-
lator of inducible cell defence. In the presence of electro-
philes and/or reactive oxygen species, Nrf2 accumulates,
translocates to the cell nucleus and binds with antioxidant
response elements (AREs). These are located within the
promoter regions of an array of cell defence genes, regu-
lating both basal and inducible expression of anti-oxidant
proteins, detoxification enzymes and other stress response
proteins [47].

Recent studies have shown that H,S donor treatment can
induce Nrf2 expression [48,49] enhance Nrf2 translocation
to the nucleus [50,51] and activate Nrf2 signalling [52],
resulting in reduced oxidative stress and cardioprotection.
The mechanism of the upregulation of Nrf2 by H,S is
under investigation with recent reports that H,S inactivates
the negative regulator of Nrf2, Keapl [53,54] resulting in
the Nrf2 mediated induction of cytoprotective genes.

Taken together, recent reports suggest that H,S is cap-
able of inhibiting the production of ROS, scavenging and
neutralising ROS and boosting the efficacy of endo-
genous anti-oxidant molecules (Figure 2). The net ef-
fect is protection of vascular function and future work is
needed to further examine the potential therapeutic ben-
efits of the anti-oxidant effects of H,S.

Studies in vascular disease states showing
vasculoprotective effects of H,S

Hypertension

Hypotensive effects of H,S were first reported when ad-
ministration of H,S donors in vivo to anaesthetised rats
was found to induce a transient hypotensive effect [55].
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Figure 2 Sources of vascular reactive oxygen species and potential protective effects of H,S. Schema showing the major vascular sources of
superoxide, the parent reactive oxygen species. H,S has been shown to inhibit A. NADPH oxidase activity and expression [39,/40], B. mitochondrial
ROS production [43], and possibly C. xanthine oxidase activity [74]. Additionally, H,S has been reported to scavenge ROS [35-38] and also promote
the actions of D. SOD [43] and E. GSH [41]. SOD: superoxide dismutase, MPO: myeloperoxidase, CAT: catalase, GPx: glutathione peroxidase, GSH:

€D)

The CSE-L-cysteine pathway is downregulated in spon-
taneously hypertensive rats and treating them with a
H,S donor is protective, reducing blood pressure and
vascular remodelling [56]. The most compelling evi-
dence for the importance of H,S in blood pressure regu-
lation is that mice deficient in CSE develop endothelial
dysfunction and hypertension within 8 weeks of birth
and that H,S replacement decreases systolic blood pres-
sure in both CSE™~ and CSE*~ mice [8]. H,S is also
reported to regulate plasma renin levels [57] and inhibit
angiotensin converting enzyme (ACE) activity in endo-
thelial cells [58]. Inhibitory effects on ACE could also
contribute to the anti-remodelling effects, which involve
H,S inhibition of collagen synthesis and smooth muscle
proliferation in spontaneously hypertensive rats [59].

Angiogenesis

H,S in implicated in the control of angiogenesis as
NaHS treatment caused endothelial cell proliferation,
adhesion, migration and tubule formation [60,61], with
further work showing that vascular endothelial growth
factor (VEGF) induced angiogenesis is mediated via H,S
[61] and that H,S treatment in vivo increases collateral
vessel growth, capillary density and blood flow in a hind-
limb ischaemia model [62].

Atherosclerosis

Atherosclerosis is a chronic immune-inflammatory, fibro-
proliferative disease caused by lipid accumulation, affecting
large and medium-sized arteries [63] Atherosclerosis is the

most common underlying cause in the development of
coronary artery disease. It has a multifactorial pathogen-
esis, involving vascular inflammation, recruitment and in-
filtration of monocytes, differentiation of monocytes to
foam cells. This leads to increased reactive oxygen species
generation resulting in an impairment of vascular endothe-
lial function, by reducing NO bioavailability [64]. Further
accumulation of foam cells and vascular smooth muscle
cell proliferation lead to the formation of vascular lesions
or plaques, which disrupt blood flow and reduce vessel
compliance. A number of studies have indicated that H,S
has many properties that may lead to the inhibition of
atherogenesis (for review see [65]).

H,S donors have been shown to reduce inflammatory
mediators, an effect that is dose-dependent and also
influenced by delivery of H,S. Rapid delivery via NaHS is
more likely to induce pro-inflammatory effects, whereas a
more controlled delivery via the newer H,S donor
GYY4137 produces mostly anti-inflammatory effects [66].
H,S treatment leads to decreased chemokine signalling
[67] due to H,S-donor dependent downregulation of
macrophage CX3CR1 receptor expression, and CX3CR1-
mediated chemotaxis [67]. NaHS inhibited leukocyte ad-
hesion in mesenteric venules, and importantly, inhibiting
CSE enhanced leukocyte adherence and infiltration [68].
NaHS treatment reduced ICAM-1 levels in ApoE™'~ mice
[69]. This adhesion molecule participates in adhesion
strengthening, monocyte spreading and transendothelial
migration thus contributes to the infiltration of inflamma-
tory cells into the vessel wall [70].
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Figure 3 Potential sites of vasculoprotective effects of H,S. Cartoon depicting a cross section of the vascular wall showing the endothelium,
intima containing smooth muscle cells overlaying the vascular media. A. H,S has been shown to decrease leukocyte adhesion and migration [60]
and differentiation to foam cells [64]. B. H,S can inhibit the production of ROS [39,40] as well as scavenge ROS [35-38], protecting endothelial
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Once leukocytes have traversed the vessel wall the
next stage in atherogenesis is foam cell formation. H,S
has been shown to inhibit hypochlorite induced athero-
genic modification of purified LDL in vitro [71] and fur-
ther studies have revealed that NaHS treatment inhibits
macrophage expression of scavenger receptors (CD36
and scavenger receptor A) and acyl-coenzyme A:choles-
terol acyltransferase-1, key proteins required for uptake
of oxidized lipoproteins and subsequent cholesterol es-
terification required for foam cell production [72].

Administration of H,S donors lead to a number of ef-
fects on vessel remodelling. In one study, CSE expres-
sion was reduced, and endogenous H,S production
decreased in blood vessels with balloon-injury induced
neointima. The neointima formation was attenuated in
animals treated with NaHS [73]. H,S is known to cause
inhibition of proliferation [74], and induction of apoptosis
[75] in human aortic vascular smooth muscle cells, and
reduce collagen deposition [59]. CSE over-expression in
human embryonic kidney cells inhibits proliferation [76]
and importantly, a recent study showed that CSE-deficient
mice have increased neointima formation, that was re-
versed with NaHS treatment [77].

NaHS treatment of ApoE ™'~ mice on a high fat diet re-
duced atherosclerotic lesion area [69]. NaHS treatment
has been shown to inhibit vascular smooth muscle cell
calcification in both cell culture [78] and in a rat model
of vascular calcification [79]. Additionally, NaHS treat-
ment in fat fed ApoE™'~ mice improved endothelial func-
tion and reduced vascular oxidative stress. Plasma H,S
levels are correlated with higher HDL and adiponectin
levels and lower triglycerides and LDL/HDL ratio [80]
in healthy human subjects, suggesting that increasing

sulfide consumption may have cardiovascular benefits.
Overall H,S has been shown to impede atherogenesis at
all stages of the disease process (Figure 3). Taken to-
gether these effects all point towards an atheroprotective
effect of endogenous H,S, that is elicited by endogenous
H,S and that exogenous H,S application may be a useful
therapeutic strategy to prevent vascular remodelling.

Changes in expression of CSE in disease states

Altered expression of CSE and reduced endogenous H,S
are observed in inflammation [68], atherosclerosis [69],
diabetes [81], hypertension [56] and treatment with H,S
donors has been repeatedly shown to be beneficial. The
inverse relationship between plasma H,S levels and vas-
cular disease strongly suggests a role for endogenous
H,S in maintaining normal vascular functions.

Conclusions

The field of H,S biology is new and exciting with regu-
lar reports of new developments in the literature. It is
clearly an important mediator in the vascular system,
contributing to vascular regulation and protection of
cells from oxidative stress and the vascular injury that
result from this and leads to vascular dysfunction. There
is good evidence that H,S donor treatment has potential
as a vasculoprotective agent for the prevention and re-
versal of cell damage that is implicit in many vascular
disease states.
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