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Abstract
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Normobaric hyperoxia (NBO) has been shown to be neuro- and vaso-protective during ischemic stroke. However,
the underlying mechanisms remain to be fully elucidated. Activation of NADPH oxidase critically contributes to
ischemic brain damage via increase in ROS production. We herein tested the hypothesis that NBO protects the
blood-brain barrier (BBB) via inhibiting gp91°"* (or called Nox2) containing NADPH oxidase in a mouse model of
middle cerebral artery occlusion (MCAO). Wild-type C57/BL6 mice and gp91°"knockout mice were given NBO
(95% O,) or normoxia (21% O,) during 90-min MCAO, followed by 22.5 hrs of reperfusion. BBB damage was
quantified by measuring Evans blue extravasation. The protein levels of matrix metalloproteinase-9 (MMP-9), tight
were assessed with western blot. Gel zymography was used to assess the
gelatinolytic activity of MMP-9. In the wild type mice, cerebral ischemia and reperfusion led to remarkable Evans
and MMP-9 levels and decreased occludin levels in the ischemic
brain tissue. In gp91phOX knockout mice, the changes in Evans blue extravasation, MMP-9 and occludin were at
much smaller magnitudes when compared to the wild type. Importantly, NBO treatment significantly reduced the
changes in all measured parameters in wild type mice, while did not cause additional reductions in these changes
when gp91P"® was knocked out. These results indicate that activation of Nox2 containing NADPH oxidase is
implicated in the induction of MMP-9, loss of occludin and BBB disruption in ischemic stroke, and inhibition of
Nox2 may be an important mechanism underlying NBO-afforded BBB protection.

Background

Normobaric hyperoxia (NBO) has been shown to effec-
tively reduce tissue infarction and protect the blood brain
barrier (BBB) in animal ischemic stroke models [1-6].
These neuro- and vaso-protective effects make NBO a
promising approach to expand the narrow time window
of the reperfusion therapies for ischemic stroke [7].
Indeed, recent studies showed that NBO treatment
during cerebral ischemia significantly reduced the neuro-
vascular complications in delayed tPA treatment in a rat
model of ischemic stroke [8,9]. In human studies, NBO
treatment was associated with improvements in clinical
deficit and survival in selected stroke patients [10,11].
Increasing oxygen level, particularly over-oxygenation,
with oxygen therapy may result in oxidative stress and
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free radical damage. Interestingly, NBO treatment for
ischemic stroke does not increase oxidative stress [2],
instead, it may decrease reactive oxygen species (ROS)
production [3]. However, it remains to be elucidated how
NBO affects ROS production in the ischemic brain.
Several oxidant enzyme systems, such as xanthine
oxidase, mitochondrial respiratory chain and NADPH
oxidase have been identified as important source of ROS
in the brain and contribute to oxidative brain injury fol-
lowing cerebral ischemia and reperfusion [12,13]. Accu-
mulating evidence from animal stroke studies suggests
that Nox is strongly implicated in the oxidative damage to
the neuronal tissue and the BBB in ischemic stroke
[14-18]. NADPH oxidase was first found in phagocytes,
which is assembled from a membrane spanning flavocyto-
chrome 5558, composed of Nox2 (also called gp91P"*¥)
and p22P"°* and four cytosolic factors (p47P"°%, p67P"%,
p40ph°x, and Rac) that associate with the flavocytochrome
to form an active enzyme [19]. Recently, several novel
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homologs of the catalytic, electron carrier component of
NADPH oxidase (gp91P"* or Nox2) have been described
in a variety of nonphagocytic cells, including Nox1, Nox3,
Nox4, Nox5, Duox1 and Duox2 [20]. Among these homo-
logies, only Nox1, Nox2 and Nox4 are found in brain
tissue, and Nox2 expression is abundant in glia cells and
endothelial cells, two major cellular components of the
BBB [21,22]. Deletion of Nox2 (or gp91P"°%) results in
reduced BBB damage in mouse models of ischemic stroke
[22-27]. Nox2-derived ROS can directly oxidize phospholi-
pid bilayer membrane to result in membrane disruption
[28]. It can also indirectly interfere with the barrier func-
tion of the BBB through ROS-mediated stimulation of
VEGF, monocyte chemoattractant protein-1, and matrix
metalloproteinase-9 (MMP-9) [29-32]. Our previous stu-
dies showed that NBO treatment resulted in parallel
reductions in MMP-9 and gp91P"** expression in ischemic
neuronal tissue and microvessels [3,4,16,32]. However, it
remains to clarify whether there is a causal link between
Nox2 containing NADPH oxidase and MMP-9 induction
in the ischemic brain and whether NBO protects the BBB
through acting on Nox2.

In this study, we addressed these important questions
on a mouse model of middle cerebral artery occlusion
(MCAO) by comparing BBB damage, MMP-9 induction
and the changes in tight junction protein claudin-5 and
occludin between wild-type and gp91P"°* knockout
mice. In addition, we also determined whether NBO
induces any additional changes to these parameters
when gp91P"°* was genetically deleted.

Materials and methods

Mice model of focal cerebral ischemia

All experimental protocols were approved by the labora-
tory animal care and use committee of the University of
New Mexico, and were performed in accordance with
animal protection guidelines. Male gp91P"°* knockout
mice (Jackson Laboratories, Bar Harbor, Ma, USA) and
wild-type C57/BL6 mice (Charles River Laboratories,
Wilmington, Ma, USA), aged between 7-9 weeks, were
anesthetized with isoflurane (4% for surgical induction,
1.5% for maintenance) during surgical procedure.

Focal cerebral ischemia was established by introducing
a silicone-coated nylon monofilament into the right com-
mon carotid artery and advancing it along the internal
carotid artery till establishing a proximal occlusion of the
right middle cerebral artery (MCA). After 90 min occlu-
sion, the filament was withdrawn to allow reperfusion for
another 22.5 hr. Body temperature of the mice was main-
tained with a heating pad to keep the rectal temperature
between 37°C to 38°C.

The success of the surgery was confirmed by 2% 2,3,5-
triphenyltetrazolium chloride (TTC) staining of a 1-mm
thick brain slice 3 mm away from the tip of the frontal
lobe as we described previously [32]. All mice included
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in this study showed typical tissue infarction in the
MCA territory of TTC-stained sections, indicating suc-
cessful MCAO.

Normobaric hyperoxia treatment

Wild-type and gp91P"** knockout mice were randomly
assigned to normoxic and NBO group. Five min after the
onset of MCAOQO, mice were put into separated individual
air-tight boxes which were ventilated (3 L/min) with medi-
cal air (21% O,) or a gas mixture of 95% O, + 5% CO,
during the 90 min ischemia. This specific gas mixture was
shown to be neuroprotective in our previous studies using
a rat model of stroke [3,4,32].

Measurement of BBB permeability

One hour before the end of the reperfusion, 2% Evans blue
in normal saline (6 mL/kg body weight) was injected into
the tail vein. At the end of the experiment, mice were dee-
ply anesthetized with isoflurane and transcardially per-
fused with PBS till colorless fluid was obtained from the
right atrium. Brains were quickly taken out and stored at
-80°C till analysis. To measure the amount of Evans blue
dye in the brain, tissues from left or right hemisphere
were separately homogenized in 1 mL 50% trichloroacetic
acid. The fluorescence intensity of each collected superna-
tant was measured on a microplate fluorescence reader
with excitation wavelength of 600 nm and emission wave-
length of 650 nm. The total Evan’s blue content (ng) in
each sample was calculated according to the external stan-
dard curve. The difference of dye content between
ischemic and nonischemic hemispheric tissue reflected the
extent of BBB damage.

Gelatin zymography analysis of MMP-2/9

MMP-2/9 activity was analyzed by gelatin zymography as
we described previously [33]. Briefly, brain tissue was
homogenized with lysis buffer containing 50 mM Tris, 150
mM NaCl, 5 mM CaCl,, 0.05% Brij-35, 0.02% NaNj3 and
1% Triton X-100. MMP-2/9 were extracted from tissue
homogenates using gelatin sepharose beads (GE Health-
care). Samples were electrophoresed on 10% sodium dode-
cylsulfate-pholyacrylamide gels containing 1 mg/mL
gelatin under non-reducing conditions. Gels were washed
in 2.5% Triton X-100 and then incubated for 48 hrs with
the developing buffer containing 50 mM Tris, 5 mM
CaCl,, 0.2 mM NaCl and 0.02% Brij-35. After incubation,
gels were stained with 0.125% Coomassie blue R-250 to
visualize clear gelatinolytic bands. A mixture of human
MMP-2/9 (Invitrogen) was used as standards.

NADPH oxidase activity assay

Lucigenin-enhanced chemiluminescence method was
used in measuring the enzyme activity of NADPH oxi-
dase in tissue homogenates as we recently described
[16]. In brief, 5 pM lucigenin and 100 uM NADPH
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(Sigma) were added to tissue extracts. Immediately after
the addition of NADPH, chemiluminescence was mea-
sured with a luminometer (Model TD-20, Turner
designs, Sunnyvale, CA, USA). For each sample, 30 sec-
onds integrated luminescence was measured and
repeated for 5 times. After measurement, the samples
were recollected and protein quantification was calcu-
lated using Bradford reagent (Bio-rad). The activity of
NADPH oxidase was calculated as the average of the 5
repeats and was expressed as relative luminescence units
per minutes per mg protein.

Western blot analysis of gp91P"°*, MMP-9, occludin and
claudin-5

Brain samples were homogenized and then lysed with
RIPA buffer (Santa Cruz Biotech). Protein extracts (50 pg
of total protein) were boiled and electrophoresed in 10%
sodium dodecyl sulfate-polyacrylamide gels, then trans-
ferred onto nitrocellulose membranes (Bio-Rad). Mem-
branes were blocked with tris-buffered saline containing
0.1% Tween-20 (TBS-T) and 5% non-fat milk at room tem-
perature for 1 hr prior to overnight incubation at 4°C with
primary antibodies against gp91P"** (1:1000 dilution, BD
Transduction Laboratory, Lexington, KY, USA), MMP-9
(1:500 dilution, Cell Signaling, Boston, Ma, USA), occludin
or claudin-5 (both at 1:1000 dilution, Invitrogen). After
washing with TBS-T, membranes were then incubated for
1 hr at room temperature with horseradish peroxidase-
conjugate corresponding secondary antibodies (anti-mouse,
anti-goat or anti-rabbit, Santa Cruz). The membranes were
then developed with the supersignal west pico horseradish
peroxidase substrate kit (Pierce, Rockford, IL, USA) and
photographed on a Kodak 4000 image station (Caresteam
molecular imaging). To control sample loading and protein
transfer, the membrane were stripped and reprobed with
B-actin antibody (1:1000 dilution, Santa Cruz).

Results

NBO reduces gp9
tissue

Gp91P"* (or Nox2) containing NADPH oxidase is an
important source of ROS in the brain [34]. We tested
the effect of cerebral ischemia and reperfusion on the
expression of this protein. As shown in Figure 1,
gp91P"°* protein level was significantly increased in the
ischemic brain tissue in the wild-type mice after 90-min
MCAO with 22.5-hr reperfusion. Interestingly, when
mice were given NBO during the ischemic duration, this
increase in gp91P"°* was significantly reduced. Since
gp91P"°* is the catalytic unit of NADPH oxidase, we
speculated that gp91P"** deletion or its inhibition by
NBO would result in reduced NADPH oxidase activity.
Indeed, as shown in Figure 2, gp91°"°* knockout mice
or NBO-treated wild-type mice showed significant
reduction in the enzymatic activities of NADPH oxidase

1Ph°* protein levels in ischemic brain
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Figure 1 NBO treatment inhibits gp91P"°* induction in ischemic

brain tissue after 90-min MCAO with 22.5 hrs of reperfusion.
Nonischemic (Non-I) and ischemic (I) hemispheric brain tissue was
homogenized for analyzing gp91°"™ protein levels with western
blot. As a loading control, the blots were stripped and reprobed with
B-actin. A) Representative blots of gp91P"** and corresponding f-
actin. B) The relative quantity of protein was calculated after
normalization to B-actin. Gp91P"* expression was markedly
increased in the ischemic brain tissue, which was significantly
inhibited by NBO. *P < 0.05 versus normoxic (NA) Non-I group, n = 6;
#p < 0.05 versus normoxic (NA) I group, n = 6.
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Figure 2 NBO treatment reduces NADPH oxidase activity in
ischemic hemispheric tissue of the wild-type mice (WT), but
not gp91"h°" knock-out mice (KO). Mice were subjected to 90-
min MCAO with 22.5 hrs of reperfusion, NBO treatment or normoxia
(NA) was given during 90-min MCAO. NADPH oxidase activity in
ischemic hemispheric microvessels was assayed using lucigenin-
enhanced chemiluminescence. NBO treatment significantly reduced
NADPH oxidase activity in WT mice, but not in gp91P"* KO mice
which already showed significantly low NADPH oxidase activity. *p
< 0.05 versus NA-WT, n = 6.
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in the ischemic brain tissue. Importantly, NBO treat-
ment did not induce further reduction in NADPH
oxidase activity in gp91P"°* knockout mice. These
results indicate that NBO inhibits Nox2 containing
NADPH oxidase in the ischemic brain.

NBO protects the BBB against ischemic damage via acting
on gp91P"°*

Gp91P"°* containing NADPH oxidase has been shown to
contribute to BBB damage in animal stroke models. We
speculated that inhibition of gp91P"** containing NADPH
oxidase by NBO could resulted in reduction in ischemic
BBB injury. We quantitated the extent of BBB damage by
measuring the difference of Evans blue content between
the ischemic and nonischemic hemispheres. As expected,
90-min MCAO with 22.5 hr-reperfusion induced signifi-
cant amounts of Evans blue leakage in the wild-type mice,
and much reduced leakage was observed in gp91P"°*
knockout mice (Figure 3). Interestingly, NBO treatment
during MCAO significantly reduced Evans blue leakage in
wild-type mice, but not in gp91P"** knockout mice
MCAO (Figure 3). These results indicate that NBO-
afforded BBB protection depends on its inhibition of
gp91P"* containing NADPH oxidase.

Gp91P"°* containing NADPH oxidase contributes to
MMP-9 induction in focal cerebral ischemia

To further understand the role of gp91P"°* containing
NADPH oxidase in ischemic BBB injury, we attempted to
determine its involvement in MMP-9 induction in
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Figure 3 NBO treatment or gp91P"°* knock-out significantly
reduces BBB disruption after 90-min MCAO with 22.5 hrs of
reperfusion. Evans blue leakage in the brain tissue was quantified
according to the external standard curve which was generated by
plotting the fluorescence intensity against the concentrations of
Evans blue. Evans blue leakage was expressed as per gram of brain
tissue (ng/g). Compared to the normoxic wild-type group (NA-WT),
NBO-treated or gp91°"** knock-out (KO) mice showed a significant
less amount of Evans blue extravasation. However, NBO did not
further reduce Evans blue leakage in gp91°"® KO mice. *p < 0.05
versus NA WT group, n = 7.
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ischemic brain tissue using gp91P"°* knockout mice.
MMP-9 is a well-recognized molecule implicated in the
proteolytic disruption of the BBB in ischemic stroke [35].
Gel zymography (Figure 4A) and western blot (Figure 4B)
showed that cerebral ischemia and reperfusion induced
remarkable increases in MMP-9 activity and its protein
levels in the ischemic brain tissue in wild-type mice, while
this MMP-9 induction was significantly, but not comple-
tely, inhibited when gp91P"** was knocked out. Different
from its effect on BBB damage, NBO treatment not only
inhibited MMP-9 induction in wild-type mice, but also
caused further reduction, though not significant, in MMP-
9 in gp91P"** knockout mice. Interestingly, at this relative
late reperfusion time points (24 hrs after stroke onset),
MMP-2 appeared to be constitutively expressed at much
lower levels compared with MMP-9, and was not affected
by ischemia and reperfusion (Figure 4A). These results
suggest that MMP-9 induction is partially mediated by
gp91P"°* containing NADPH oxidase, and besides
NADPH oxidase, NBO might inhibit MMP-9 induction
through other unknown mechanisms.

Gp91°"°* containing NADPH oxidase contributes to occludin,
but not claudin-5 degradation in focal cerebral ischemia
Transmembrane protein occludin and claudins are the
key molecules forming the seal between adjacent
endothelial cells of the BBB. Using gp91P"°* knockout
mice, we tested the effect of gp91P"** containing NADPH
oxidase on tight junction protein occludin and claudin-5.
Consistent with our results obtained from ischemic
stroke rats [4], ischemia and reperfusion induced a
reduction in occludin protein, but not claudin-5, in wild-
type mice, and NBO treatment significantly reversed this
reduction (Figure 5). Considering the fact that occludin is
substrate of MMP-9 and reduced MMP-9 induction in
the ischemic brain of gp91°"** knockout mice (Figure 4),
we speculated that gp91P"°* knockout could lead to a
reduction in occludin loss in ischemic brain tissue.
Indeed, 90-min MCAO with 22.5 hrs of reperfusion
induced occludin degradation to much less degree in
gp91P"°* knockout mice than normoxic wild-type mice
(Figure 5). Similar to their effect on MMP-9 induction
(Figure 4), the combination of NBO and gp91P"°* knock-
out led to a further, but not significant, reduction in
occludin protein loss in the ischemic tissue compared to
each manipulation alone (Figure 5). No significant effects
were observed for NBO or gp91P"°* knockout on clau-
din-5 protein. These results suggest that gp91P"°* con-
taining NADPH oxidase is implicated in occludin
degradation in the ischemic brain.

Discussion
Using gp91°"°* knockout mice, the present study unam-
biguously demonstrates that Nox2-containing NADPH
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Figure 4 NBO treatment or gp91P"°* knock-out significantly reduces MMP-9 induction in ischemic brain tissue after 90-min MCAO
with 22.5 hrs of reperfusion. A) Hemispheric brain tissue was homogenized for analyzing MMP-2 and 9 levels with gel gelatin zymography.
Upper panel: representative gelatin zymograms showing the expression of proforms of MMP-2 and 9 in Nonischemic (Non-l) and ischemic (1)
brain tissues in normoxic wild-type (NA-WT), NBO-treated WT (NBO-WT), normoxic gp91°"® knock-out (NA-KO) and NBO-KO mice. STD is a
mixture of human standard MMP-2 and 9. Bottom panels: the band intensities of MMP-2 and 9 were quantified. MMP-9 was significantly
induced in the ischemic brain of NA-WT mice, and this induction was significantly inhibited by NBO or gp91P"® KO. The combination of NBO
and gp91phox KO led to a further, but not significant, reduction in MMP-9 compared each modulation alone (Left bottom panel). No significant
changes were observed in MMP-2 for all groups (Right bottom panel). *p < 0.05 versus Non-l, n = 6; “p < 0.05 versus NA-WT, n = 6. B)
Hemispheric brain tissue was homogenized for analyzing MMP-9 protein level with western blot. Upper panel: representative blots of MMP-9
protein in hemispheric brain tissue obtained from NA-WT, NBO-WT, NA-KO and NBO-KO mice. B-actin served as a protein loading control.
Bottom panel: the relative quantity of MMP-9 protein was calculated after normalization to B-actin. *p < 0.05 versus Non-l, n = 6; p < 0.05
versus NA-WT, n = 6.
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Figure 5 NBO treatment or gp91P"°* knock-out significantly
reduces occludin degradation in ischemic brain tissue after 90-
min MCAO with 22.5 hrs of reperfusion. Hemispheric brain tissue
was homogenized for analyzing tight junction proteins occludin and
claudin-5 with western blot. A) Representative blots of occludin,
claudin-5 and the corresponding B-actin showing their changes in
Nonischemic (Non-l) and ischemic (1) brain tissues in normoxic wild-
type (NA-WT), NBO-treated WT (NBO-WT), normoxic gp91°"* knock-
out (NA-KO) and NBO-KO mice. B) The relative quantity of occludin
protein was calculated after normalization to B-actin. Occludin protein
level was significantly reduced in the ischemic brain of NA-WT mice,
and this reduction was significantly reversed by NBO or gp91P"® KO.
*p < 0.05 versus Non-, and *p < 0,05 versus NA-WT, n = 6. C) No
significant changes were observed in claudin-5 protein for all groups.

oxidase is implicated in MMP-9 induction, occludin
degradation and BBB disruption in focal cerebral ische-
mia and reperfusion. Moreover, Inhibition of Nox2
appears to be fully responsible for the protective effects
of NBO treatment on the BBB, while it only partially
accounts for NBO inhibitory effects on MMP-9
induction.
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Increased ROS generation is a common event in cere-
bral ischemia contributing to ischemic brain injury
[36-38]. Accumulating evidence has shown that NADPH
oxidase is an important source of ROS in the brain, and
inhibition of this enzyme can effectively reduce ischemic
damage to neuronal tissue and the BBB [16,22-25,27,32].
Several NADPH oxidase homologs including Nox1,
Nox2 and Nox4 have been found in the brain, and their
roles in ischemic brain damage are quite different. In a
mouse MCAO model, Nox1 knockout was found to
have no effect on neurological deficit, total or subcorti-
cal cerebral infarct volume or edema volume, while con-
tributed to the development of a 4-fold greater cortical
infarct volume [39]. Nox4 may play an important role in
ischemia/reperfusion-induced neoangiogenesis during
stroke recovery [22]. On the contrary, Nox2-containing
NADPH oxidase is shown to critically contribute to
ischemic neuronal tissue injury and BBB disruption
[16,18,27,32]. In the present study, we found that
gp91P"°* (or Nox2) expression was significantly up-regu-
lated in ischemic mouse brain, and knockout of Nox2
resulted in a significant reduction in NADPH oxidase
activity in ischemic brain tissue. These data indicate that
Nox2 containing NADPH oxidase is activated during
cerebral ischemia and reperfusion in mice.

The mechanisms by which NADPH oxidase contribute
to ischemic brain damage, particularly its damage to the
BBB, are currently under active investigation. As an
important source of ROS in the brain, NADPH oxidase is
readily involved in ischemic BBB damage through enhan-
cing oxidative damage to the lipid bilayer membrane of
the neurovascular cells. In addition, NADPH oxidase-
derived ROS can also act as stimulators and activators to
MMPs, thus enhancing their proteolytic degradation to
the BBB [40]. MMPs are well-recognized effector mole-
cules implicated in BBB damage during ischemic stroke
[31,41]. Among MMP family members, gelatinases MMP-
2 and 9 have been a research focus in ischemic stroke
because of their substrate specificity for fibronectin, lami-
nin, collagen type IV and tight junction proteins, which
are structural components of the BBB [42,43]. Our results
that gp91P"°* knockout mouse exhibited a significant
reduction in MMP-9 induction in the ischemic brain sug-
gest an important role of Nox2 containing NADPH oxi-
dase in MMP-9 upregulation in focal cerebral ischemia.
We found that, unlike MMP-9, MMP-2 was constantly
expressed at low levels in the brain tissue of both wild-
type and gp91P"°* knockout mice, and its expression was
not affected by cerebral ischemia and reperfusion or
gp91P"°* knockout. These results demonstrate that at
24 hrs after stroke onset, MMP-9, rather than MMP-2, is
the major gelatinase produced in the ischemic brain. Con-
sistent with our findings, an early study showed that
MMP-2 was the major gelatinase contributing to early
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BBB disruption, while MMP-9 appeared to play an impor-
tant role at late reperfusion time points [33].

Proteolytic disruption of the tight junction proteins by
MMPs has been well documented in ischemic stroke
[33,43-45]. Claudins and occludin are integral transmem-
brane tight junction proteins forming the seal between
adjacent endothelial cells [46,47]. Our results indicate that
occludin protein is greatly decreased in the ischemic brain
tissue of the wild-type mice, while no change is observed
for caludin-5. This is consistent with our previous results
obtained from a rat stroke model [44]. In vitro incubation
of tight junction proteins with purified MMP-2 and/or 9
has provided solid evidence that occludin is a substrate of
MMP-2/9 [4,48]. However, the effects of MMP-2/9 on
claudin-5 appear to be more complicated because contro-
versial results have been reported [4,48-50]. In agreement
with its inhibitory effects on MMP-9 induction, gp91P"°*
knockout leads to significant reduction in occludin protein
level in ischemic brain tissue. In contrast, gp91P"** knock-
out has no effect on claudin-5 expression in both normal
and ischemic conditions. These results suggest that Nox2
containing NADPH oxidase contributes to occludin degra-
dation, and this effect is probably secondary to NADPH
oxidase’s action on MMP-9.

Normobaric oxygen has been shown to be very effec-
tive in reducing tissue infarction and BBB damage in
focal cerebral ischemia [1-4,8,9,11,51]. Increased oxida-
tive stress has been an important concern with oxygen
therapy. Interestingly, recently studies indicate that NBO
treatment does not increase ROS production [2,3,51],
and it may even decrease ROS generation in the ischemic
penumbra [3]. In a recently study on ischemic stroke
rats, we found that NBO treatment inhibited gp91°"°* (or
Nox2) expression and MMP-9 induction and reduced
BBB disruption. To definitively clarify whether NBO acts
on Nox2 to exert its BBB protection, we tested NBO’s
effects when gp91P"** was genetically deleted. Our results
demonstrate that NBO significantly reduced gp91P"°*
protein expression and NADPH oxidase activity in the
ischemic tissue; however, it did not cause any further
reductions in BBB damage and NADPH oxidase activity
when gp91P"°* was knocked out. Since MMP-9 induction
and occludin degradation in the ischemic brain was clo-
sely linked to Nox2, NBO'’s effects on these molecules
were also diminished in gp91P"°* knockout mice. These
results suggest that NBO indeed acts on Nox2 containing
oxidase to protect the BBB against ischemic damage.
Under ischemic conditions, several mechanisms have
been proposed to activate Nox2, such as phosphatidyli-
nositol-3-kinase/AKT-dependent NF- kB and HIF-1 a
pathways [52], inflammatory cytokine IL-1B [17] and
metabotropic glutamate receptor 1 [53]. Our previous
findings that NBO treatment improved ischemic tissue
oxygenation by maintaining penumbral pO, level close to
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the preischemic level [3] suggest that NBO may inhibit
Nox2 activation through suppressing the above pathways
secondary to NBO'’s effects on improving tissue oxygena-
tion. Future studies are required to test these possibilities.

In conclusion, our results demonstrate that Nox2 con-
taining NADPH oxidase critically contributes to ischemic
BBB damage, and inhibiting Nox2 is an important
mechanism underlying NBO-afforded BBB protection in
transient cerebral ischemia and reperfusion.
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